Measurement and perturbation of morphogen lifetime: effects on gradient shape.
نویسندگان
چکیده
Protein lifetime is of critical importance for most biological processes and plays a central role in cell signaling and embryonic development, where it impacts the absolute concentration of signaling molecules and, potentially, the shape of morphogen gradients. Early conceptual and mathematical models of gradient formation proposed that steady-state gradients are established by an equilibration between the lifetime of a morphogen and its rates of synthesis and diffusion, though whether gradients in fact reach steady state before being read out is a matter of controversy. In any case, this class of models predicts that protein lifetime is a key determinant of both the time to steady state and the spatial extent of a gradient. Using a method that employs repeated photoswitching of a fusion of the morphogen Bicoid (Bcd) and the photoconvertible fluorescent protein Dronpa, we measure and modify the lifetime of Dronpa-Bcd in living Drosophila embryos. We find that the lifetime of Bcd is dynamic, changing from 50 min before mitotic cycle 14 to 15 min during cellularization. Moreover, by measuring total quantities of Bcd over time, we find that the gradient does not reach steady state. Finally, using a nearly continuous low-level conversion to the dark state of Dronpa-Bcd to mimic the effect of increased degradation, we demonstrate that perturbation of protein lifetime changes the characteristic length of the gradient, providing direct support for a mechanism based on synthesis, diffusion, and degradation.
منابع مشابه
Diverse Paths to Morphogen Gradient Robustness
2 Summary The patterning of many developing tissues is orchestrated by gradients of morphogens. Included among the molecular events that drive the formation of morphogen gradients are a variety of elaborate regulatory interactions. It is widely thought that the purpose of such interactions is to make gradients robust—i.e. resistant to change in the face of genetic or environmental perturbations...
متن کاملMorphogen gradient from a noisy source.
We investigate the effect of time-dependent noise on the shape of a morphogen gradient in a developing embryo. Perturbation theory is used to calculate the deviations from deterministic behavior in a simple reaction-diffusion model of robust gradient formation, and the results are confirmed by numerical simulation. It is shown that such deviations can disrupt robustness for sufficiently high no...
متن کاملA study on the use of perturbation technique for analyzing the nonlinear forced response of piezoelectric microcantilevers
In this paper, a comparison is made between direct and indirect perturbation approaches to solve the non-linear vibration equations of a piezoelectrically actuated cantilever microbeam. In this comparison, the equation of motion is considered according to Euler-Bernoulli theory with considering the non-linear geometric and inertia terms resulted from shortening effect. In the direct perturbatio...
متن کاملQuantifying the Gurken morphogen gradient in Drosophila oogenesis.
Quantitative information about the distribution of morphogens is crucial for understanding their effects on cell-fate determination, yet it is difficult to obtain through direct measurements. We have developed a parameter estimation approach for quantifying the spatial distribution of Gurken, a TGFalpha-like EGFR ligand that acts as a morphogen in Drosophila oogenesis. Modeling of Gurken/EGFR s...
متن کاملMorphogen Profiles Can Be Optimised to Buffer Against Noise
Morphogen profiles play a vital role in biology by specifying position in embryonic development. However, the factors that influence the shape of a morphogen profile remain poorly understood. Since morphogens should provide precise positional information, one significant factor is the robustness of the profile to noise. We compare three classes of morphogen profiles (linear, exponential, algebr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Biophysical journal
دوره 101 8 شماره
صفحات -
تاریخ انتشار 2011